How is germination rate calculated?

Mr. González

Do Now (5 min.)

 List the major topics you have included in your germination lab report.

Do Now (5 min.)

- Major topics included in your germination lab report:
 - Anatomy of a seed,
 - Germination process,
 - Hydroponics,
 - Basil plant,
 - **????**

HW

- Continue your germination lab report.
- Submit the following chapters of your lab report next class:
 - Title page,
 - Problem,
 - Introduction/Background Information
 - Hypothesis
 - Safety,
 - Materials,
 - Procedures, and
 - Bibliography.

Objectives

- I can calculate the real germination rate.
- I can describe what "error" is.
- I can calculate a 5% margin of error for the hypothesis.

Procedures to Monitor the Germination Process

- Once you add the seeds to the sponges and the sponges to the trays...
- Keep sponges moist on a daily basis.
- Once most (>70%) of your seedlings have germinated you should take the black plastic bag off and make sure the plantlings get good light.
- Feed your plants nutrients.
- Once they're about 4 inches tall they're ready for your AEMs.

Create the following table in your journals.

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6						
7						
8						
9						
10						

- Calculate the germination rate after 6, 7, 8,
 9, and 10 days.
- The germination rate can be calculated by?
- Hint:
 - How many sprouts do you see?
 - How many total seeds were placed in the tray?

- What mathematical expression can you use to calculate the rate?
 - Sprouts you see / total seeds in tray

What mathematical expression can you use to calculate the rate?

Sprouts you see

total seeds in tray

Define Possible Outcomes

- Define a sprouting Outcome.
- Possible outcomes need to be defined at the start of an experiment.
- These outcomes will form the basis of your observations and events.
- For the purposes of this project, we should define sprouting as the moment one hypocotyl is observable from the sponge.

Possible Outcomes

How many possible outcomes are there?

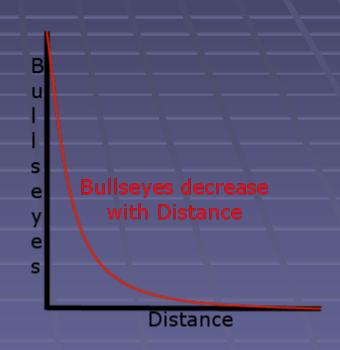
How often will you calculate the rate?

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6						
7						
8						
9						
10						

- Take out your hypothesis tables and predict the rates if you haven't already.
- Rewrite them on this new table.

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6						
7						
8						
9						
10						

What is a Margin of Error?


- Variation exists in nature.
- Nothing is ever predicted perfectly.
- No two events are ever perfectly the same.
- We can allow ourselves a "margin of error."

What is a Margin of Error?

- Can you give examples of when you've used a margin of error or when you could use a margin of error?
- How much error do you think is reasonable after which it becomes ridiculous?

Bullseye

http://technologymarketers.com/StatingTheObvious/files/2011/12/bullseyes-over-distance.pnc

http://image.shutterstock.com/display_pic_with_logo/72655/72655,1231297063, stock-photo-shot-up-target-with-bulls-eve-22884709.ipg

What is a Margin of Error?

- Typically, statisticians allow a maximum error of 5%.
- In other words, if you're data or prediction is 95% close to the truth or better, it is considered "good."
- Obviously, the higher the better = 99%.
- To get there, you need a lot of data, observations, and very strict procedures.

Calculating Error Margin

 Calculate the 5% error by multiplying your hypothetical rate by .05 and then +/- from the hypothetical rate.

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6			10			
7			25			
8			50			
9			75			
10			90			

- To calculate 5% of 10% you convert 5% to a decimal:
 - = 0.05
- You then multiply 0.05 by 10 and you get:
 - = 0.5%
- Subtract and add 0.5% to 10% and you get an interval that gives you a little more room to get your hypothesis right:
 - = 9.5% 10.5%
- Put this in the 5% "error margin" column next to your hypothesis of 10.

Calculate the 5% error interval for the example below.

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6		117	10	9.5-10.5		
7		117	25			
8		117	50			
9		117	75			
10		117	90			

- Error intervals.
- Notice how the lower value is written to the left of the hyphen. Why?

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6		117	10	9.5-10.5		
7		117	25	23.75-26.25		
8		117	50	47.5-52.5		
9		117	75	71.25-78.75		
10		117	90	85.5-94.5		

Day 6 Scenario

 Calculate the real germination rate if 26 seeds germinated in the example below.

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6	26	117	10	9.5-10.5		
7	39	117	25	23.75-26.25		
8	47	117	50	47.5-52.5		
9	78	117	75	71.25-78.75		
10	94	117	90	85.5-94.5		

Day 6 Scenario

In this case, was the hypothesis supported by the data?

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6	26	117	10	9.5-10.5	22.2	
7	39	117	25	23.75-26.25	33.3	
8	59	117	50	47.5-52.5	50.4	
9	89	117	75	71.25-78.75	76.1	
10	94	117	90	85.5-94.5	80.3	

In this case, was the hypothesis supported by the data?

Day	Sprouts	Seed Total	Hyp. Rate %	5% error	Real Rate %	Support Y/N
6	26	117	10	9.5-10.5	22.2	N
7	39	117	25	23.75-26.25	33.3	N
8	59	117	50	47.5-52.5	50.4	Υ
9	89	117	75	71.25-78.75	76.1	Y
10	94	117	90	85.5-94.5	80.3	N

Next Activity

What should go in the background information of the germination lab report?

- You will now go over each others' lab report drafts and grade them up to now.
- Grade them based on your knowledge of what needs to be in a lab report.

Materials

- Air conditioner (weather)
 sealer sponge 1 ¼ inches x 1
 ¼ inches x 42 inches.
- Scissors
- Permanent Markers
- Ruler
- Grids
- Germinating trays
- Waterproofing plastic (optional)
- Seeds
- Paper for seeds
- Water
- Watering can or bottle

- Black plastic garbage bag to cover seeds.
- Tray cover
- Nutrients
- E.C. Meter (Hanna Combo Sensor)
- pH meter
- RO/DI water
- Spray bottle
- Calibrating solutions
- pH storage solution
- pH down and up solution

Procedures

- Place the tray in the desired location. Fill up the tray about half way with water.
- Place grid in water and spray the sponges until they are soaked.
- Cover your sponges with the black plastic sheet.
- Place the tray cover over your seedlings to retain moisture.
- After the seeds have germinated prepare a light nutrient solution about 900 µS/cm³.
- Monitor growth every day. Spray sponges daily if necessary.
- Once your seedlings are about 3-5 inches long and have strong roots you may transfer them to you grow bed.

Products of Hydroponically Germinated Seeds.

How is germination rate calculated?

HW

- Continue your germination lab report.
- Submit the following chapters of your lab report next class:
 - Title page,
 - Problem,
 - Introduction/Background Information
 - Hypothesis
 - Safety,
 - Materials,
 - Procedures, and
 - Bibliography.